Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 636: 19

Answer

$\dfrac{1}{6}$

Work Step by Step

Given: $\Sigma_{n=3}^{\infty}\dfrac{1}{(2n-3)(2n-1)}$ Re-write the given series as: $\Sigma_{n=3}^{\infty}\dfrac{1}{(2n-3)(2n-1)}=\frac{1}{2}\Sigma_{n=3}^{\infty}[\dfrac{1}{2n-3}-\dfrac{1}{2n-1}]$ Apply limits, we get: $\frac{1}{2}\Sigma_{n=3}^{\infty}[\dfrac{1}{2n-3}-\dfrac{1}{2n-1}]=\lim\limits_{m \to \infty}\frac{1}{2}\Sigma_{n=3}^{m}[\dfrac{1}{2n-3}-\dfrac{1}{2n-1}]$ $\lim\limits_{m \to \infty}\frac{1}{2}\Sigma_{n=3}^{m}[\dfrac{1}{2n-3}-\dfrac{1}{2n-1}]=\lim\limits_{m \to \infty}\frac{1}{2}\Sigma_{n=3}^{m}[\dfrac{1}{3}-\dfrac{1}{2m-1}]$ After simplifications, we get $\lim\limits_{m \to \infty}\frac{1}{2}\Sigma_{n=3}^{m}[\dfrac{1}{3}-\dfrac{1}{2m-1}]=\dfrac{1}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.