Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Practice Exercises - Page 636: 3

Answer

converges to $-1$.

Work Step by Step

As we know that a sequence converges when $\lim\limits_{n \to \infty}a_n$ exists. Consider $a_n=\dfrac{1-2^n}{2^ n}$ Apply limits to both sides. $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}[\dfrac{1-2^n}{2^ n}]$ $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}\dfrac{1}{2^ n}-\lim\limits_{n \to \infty}\dfrac{2^n}{2^ n}$ $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}\dfrac{1}{2^ n}-1$ $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}(\dfrac{1}{2})^ n-1$ $\lim\limits_{n \to \infty}a_n=0-1=-1$ Therefore, the sequence converges to $-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.