Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.4 - Linear Regression - Exercises - Page 102: 16

Answer

$y=45x+25$ Projected index in 2011:$\quad 520.$

Work Step by Step

The regression line is $\qquad y=mx+b$ where $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}\qquad b=\frac{\sum y-m(\sum x)}{n},$ $n=$ number of data points. $\left[\begin{array}{lllll} & x & y & xy & x^{2}\\ & & & & \\ \hline & 0 & 50 & 0 & 0\\ & 5 & 200 & 1000 & 25\\ & 10 & 500 & 5000 & 100\\ \hline & & & & \\ \sum & 15 & 750 & 6000 & 125\\ & & & & \end{array}\right]$ $m=\displaystyle \frac{3(6000)-(15)(750)}{3(125)-(15)^{2}}=\frac{6750}{150}=45$ $b=\displaystyle \frac{750-3(15)}{3}=\frac{75}{3}=25$ $y=45x+25$ In the year 2011 ($11$ years after 2000) we have: $y=45(11)+25=520$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.