Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.4 - Linear Regression - Exercises - Page 102: 12

Answer

$y=-0.2x+7.2$

Work Step by Step

Regression line $y=mx+b,$ where $m$ and $b$ are computed as follows: $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}\qquad b=\frac{\sum y-m(\sum x)}{n}$ $n=$ number of data points. The quantities $m$ and $b$ are called the regression coefficients. ----- Build a table \begin{array}{|c|c|c|c|c|c} \hline & x & y & xy & xx & \\ \hline & 2 & 4 & 8 & 4 & \\ & 4 & 8 & 32 & 16 & \\ & 8 & 12 & 96 & 64 & \\ & 10 & 0 & 0 & 100 & \hline \\ \Sigma & {\bf 24} & {\bf 24} & {\bf 136} & {\bf 184} & \hline \\ points & 4 & & 544 & 736 & \hline \\ m= & -0.2 & & & & \\ b= & 7.2 & & & & \\ \end{array} $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}=\frac{544-(24)(24)}{736-(24)^{2}}=-0.2$ $b=\displaystyle \frac{\sum y-m(\sum x)}{n}=\frac{24-(-0.2)(24)}{24}=7.2$ $y=-0.2x+7.2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.