Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.4 - Linear Regression - Exercises - Page 102: 10

Answer

$y=0.5x+0.8333$

Work Step by Step

Regression line $y=mx+b,$ where $m$ and $b$ are computed as follows: $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}\qquad b=\frac{\sum y-m(\sum x)}{n}$ $n=$ number of data points. The quantities $m$ and $b$ are called the regression coefficients. ----- Build a table \begin{array}{|cc|c|c|c|cc|} \hline & x & y & xy & xx \\ \hline & 0 & 1 & 0 & 0 \\ & 1 & 1 & 1 & 1 \\ & 2 & 2 & 4 & 4 \\\hline \Sigma & {\bf 3} & {\bf 4} & {\bf 5} & {\bf 5} \\ & & & & \\ points & 3 & & 15 & 15 \\ \end{array} $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}=\frac{15-(3)(4)}{15-(3)^{2}}=\frac{3}{6}=\frac{1}{2}=0.5$ $b=\displaystyle \frac{\sum y-m(\sum x)}{n}=\frac{4-0.5(3)}{3}=\frac{2.5}{3}0.8333$ $y=0.5x+0.8333$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.