Answer
$86$
Work Step by Step
Residuals and Sum-of-Squares Error (SSE)
If we model a collection of data $(x_{1}, y_{1})$ , . , $(x_{n}, y_{n})$ with a linear equation $\hat{y}=mx+b$,
then the residuals are the $n$ quantities (Observed Value-Predicted Value):
$(y_{1}-\hat{y}_{1}), (y_{2}-\hat{y}_{2}), \ldots, (y_{n}-\hat{y}_{n})$ .
The sum-of-squares error (SSE) is the sum of the squares of the residuals:
SSE $=(y_{1}-\hat{y}_{1})^{2}+(y_{2}-\hat{y}_{2})^{2}+\cdots+(y_{n}-\hat{y}_{n})^{2}.$
----
Build a table, column by column
\begin{array}{cc|c|c|c|cc}
& x & y & y'=-x+2 & (y-y') & (y-y')^2 \\
\hline & 0 & -1 & 2 & -3 & 9 \\
& 1 & 3 & 1 & 2 & 4 \\
& 4 & 6 & -2 & 8 & 64 \\
& 5 & 0 & -3 & 3 & 9 \\
\hline & & & & {\bf SSE}= & {\bf 86} \\\hline
\end{array}