Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.4 - Linear Regression - Exercises - Page 103: 17

Answer

$y=3.4t+5$ Projected in 2006:$\quad {{\$}} 25.4$ billion

Work Step by Step

The regression line is $\qquad y=mx+b$, where $m$ and $b$ are computed as follows. $m=\displaystyle \frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^{2})-(\sum x)^{2}}\qquad b=\frac{\sum y-m(\sum x)}{n},$ $n=$ number of data points. $\left[\begin{array}{lllll} & t & y & ty & t^{2}\\ & & & & \\ \hline & 0 & 6 & 0 & 0\\ & 5 & 20 & 100 & 25\\ & 10 & 40 & 400 & 100\\ \hline & & & & \\ \sum & 15 & 66 & 500 & 125\\ & & & & \end{array}\right]$ $m=\displaystyle \frac{3(500)-(15)(66)}{3(125)-(15)^{2}}=\frac{510}{150}=3.4$ $b=\displaystyle \frac{66-3.4(15)}{3}=5$ $y=3.4t+5$ In the year 2006, $ t=6$ (years after 2000), and we have: $y=3.4(6)+5=25.4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.