Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.2 - Series - 11.2 Exercises - Page 716: 58

Answer

convergent and sum is $-(\frac{x+2}{x+1})$

Work Step by Step

$\Sigma^{\infty}_{n=1} (x+2)^{n}$ $=(x+2)^{1}+(x+2)^{2}+(x+2)^{3}+...$ $a=x+2$ and $r=x+2$ $\Sigma^{\infty}_{n=1} (x+2)^{n}$ $|r| \lt 1$ $|x+2| \lt 1$ $-1 \lt x+2 \lt 1$ $-3 \lt x \lt -1$ Therefore, the series is convergent. The sum is $S_{\infty} = \frac{x+2}{1-(x+2)}$ $=\frac{x+2}{-1-x}$ $=-(\frac{x+2}{x+1})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.