Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.2 - Series - 11.2 Exercises - Page 716: 28

Answer

Convergent with sum $\frac{5}{8}$

Work Step by Step

$\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{2}{81}+\frac{1}{243}+\frac{2}{729}+...$ $= \Sigma^{\infty}_{n=1} \frac{1}{3^{2n-1}} + 2\Sigma^{\infty}_{n=1} \frac{1}{9^{n}}$ The series $\Sigma^{\infty}_{n=1} \frac{1}{3^{2n-1}}$ is a geometric series with $a=\frac{1}{3}$ and $r=\frac{1}{9}$. $\Sigma^{\infty}_{n=1} \frac{1}{3^{2n-1}}= \frac{\frac{1}{3}}{1-\frac{1}{9}}$ $= \frac{3}{8}$ The series $\Sigma^{\infty}_{n=1} \frac{1}{9^{n}}$ is a geometric series with $a=\frac{1}{9}$ and $r=\frac{1}{9}$ $\Sigma^{\infty}_{n=1} \frac{1}{9^{n}}= \frac{\frac{1}{9}}{1-\frac{1}{9}}$ $=\frac{1}{8}$ Hence the series is convergent $\Sigma^{\infty}_{n=1} \frac{1}{3^{2n-1}} + 2\Sigma^{\infty}_{n=1} \frac{1}{9^{n}}=\frac{3}{8}+2(\frac{1}{8})$ $=\frac{5}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.