Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.2 - Series - 11.2 Exercises - Page 716: 48

Answer

series is convergent and the sum is $\frac{1}{4}$.

Work Step by Step

$\Sigma^{\infty}_{n=2} \frac{1}{n^{3}-n}$ $a_{n}=\frac{1}{n^{3}-n}$ $=\frac{1}{n(n+1)(n-1)}$ $\frac{1}{n(n+1)(n-1)}= \frac{A}{n}+\frac{B}{n-1}+\frac{C}{n+1}$ $A=-1$, $B=\frac{1}{2}$, $C=\frac{1}{2}$ $a_{n}=\frac{-1}{n}+\frac{\frac{1}{2}}{n-1}+\frac{\frac{1}{2}}{n+1}$ $a_{n}=\frac{-\frac{1}{2}}{n}+\frac{\frac{1}{2}}{n-1}+\frac{\frac{1}{2}}{n+1}-\frac{\frac{1}{2}}{n}$ $=-\frac{1}{2}(\frac{1}{n}-\frac{1}{n-1})+\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n})$ $\Sigma^{\infty}_{i=2}a_{n} = -\frac{1}{2}[(\frac{1}{2}-1)+(\frac{1}{3}-\frac{1}{2})+(\frac{1}{4}-\frac{1}{3})+...+(\frac{1}{n}-\frac{1}{n-1})] +\frac{1}{2}[(\frac{1}{3}-\frac{1}{2})+(\frac{1}{4}-\frac{1}{3})+(\frac{1}{5}-\frac{1}{4})+...+(\frac{1}{n+1}-\frac{1}{n})]$ $=\frac{1}{2} -\frac{1}{2n}-\frac{1}{4}+\frac{1}{2(n+1)}$ $=\frac{1}{4}-\frac{1}{2n}+\frac{1}{2(n+1)}$ $\lim\limits_{n \to \infty}S_{n} = \lim\limits_{n \to \infty}[\frac{1}{4}-\frac{1}{2n}+\frac{1}{2(n+1)}]$ $=\frac{1}{4}$ Therefore the series is convergent and the sum is $\frac{1}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.