Answer
$\frac{x^2}{4}+(y-1)^2=1$
Work Step by Step
$x=2cos\theta$
$y=1+sin\theta$
$cos^2\theta=\frac{x^2}{4}$
$sin^2\theta =(y-1)^2$
Therefore,
$cos^2\theta+sin^2\theta=\frac{x^2}{4}+(y-1)^2$
$\frac{x^2}{4}+(y-1)^2=1$
Also see attached graph