Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Review - Exercises - Page 690: 22

Answer

$\frac{4}{9}$

Work Step by Step

Given: $x=t^{3}+6t+1$ and $y=2t-t^{2}$ $\frac{dx}{dt}=3t^{2}+6$ $\frac{dy}{dt}=2-2t$ $\frac{dy}{dx}=\frac{{dy}/{dt}}{{dx}/{dt}}$ $=\frac{2-2t}{3t^{2}+6}$ Let $m$ be the slope of the tangent line to the given curve. $m=\frac{dy}{dx}|_{t=-1}=\frac{2-2t}{3t^{2}+6}|_{t=-1}$ $=\frac{2-2\times (-1)}{3(-1)^{2}+6}$ Hence, $m=\frac{4}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.