Answer
$2(5\sqrt 5-1)$
Work Step by Step
$x=3 t^{2}$, $y=2t^{3}$ on $0\leq t\leq 2$
$x'=6t$, $y'=6t^{2}$ on $0\leq t\leq 2$
Length of the curve is given as:
$L=\int_{0}^{2}\sqrt {(6t)^2+(6t^{2})^2} dt$
$=\int_{0}^{2}\sqrt {36t^2(1+t^{2})} dt$
Let $u=1+t^2$ then $du=2tdt$
Also, when $t=0$ then $u=1$ and $t=2$ then $u=5$
Thus, $L=3\int_{1}^{5}u^{1/2} du$
or, $L=2(5\sqrt 5-1)$