Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.4 Green's Theorem - 16.4 Exercises - Page 1142: 29

Answer

$0$

Work Step by Step

We need to work out with the line integral and evaluate the integrand of the double integral as follows: $\int_{C} F \cdot dr= -\int_{C} \dfrac{y}{x^2+y^2} i+\int_{C} \dfrac{x}{x^2+y^2} j (dx i +dyj)=-\int_{C} \dfrac{y}{x^2+y^2} dx+\int_{C} \dfrac{x}{x^2+y^2} dy$ Green's Theorem states that: $\oint_C M \,dx+ N \,dy=\iint_{D}(\dfrac{\partial N}{\partial x}-\dfrac{\partial M}{\partial y})dA$ Now, $\oint_C-\dfrac{y}{x^2+y^2} dx+\int_{C} \dfrac{x}{x^2+y^2} dy=\iint_{D}(\dfrac{\partial (\dfrac{x}{x^2+y^2} )}{\partial x}-\dfrac{\partial (-\dfrac{y}{x^2+y^2} )}{\partial y})\ dA \\=\iint_{D} \dfrac{y^2-x^2}{(x^2+y^2)^2}-\dfrac{y^2-x^2}{(x^2+y^2)^2} \\ =0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.