Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.4 Green's Theorem - 16.4 Exercises - Page 1142: 20

Answer

$30 \pi$

Work Step by Step

When $C$ is in counterclockwise direction then $A=\oint_{C} x dy=-\oint_{C} y dx$ and when $C$ is in clockwise direction then $A=-\oint_{C} x dy=\oint_{C} dx$ Now, $x =5 \cos t-\cos 5t; dx=[-5 \sin t +5 \sin (5t) ] dt$ and $y=5 \sin t -\sin 5t; dy=[5\cos t -5 \cos 5t] dt$ Let us consider that $F=(\dfrac{-y}{2}, \dfrac{x}{2})$ Now, $A=\oint_{C} F dr=\oint_{C} \dfrac{-y}{2} dx+\dfrac{x}{2} dy$ $= \int_{0}^{2 \pi} [-(5 \sin t -\sin 5t)( [-5 \sin t +5 \sin (5t) ])] + (5 \cos t-\cos 5t) ([-5 \sin t +5 \sin (5t) ] dt) \times \dfrac{1}{2}$ $=\int_{0}^{2 \pi} 30-30 \sin t \times \sin 5t -30 \cos t \cos (5t) \times \dfrac{1}{2}$ $=\int_{0}^{2 \pi} 30 \ dt + \int_{0}^{2 \pi} (-15) \times [\cos (-4t) -\cos 6t] -15 [\cos (-4t) +\cos 6t) dt \times \dfrac{1}{2}$ $= 30 \pi+[\dfrac{-15 \sin 6t}{4}]_0^{2 \pi}$ $=30 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.