Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.4 Green's Theorem - 16.4 Exercises - Page 1142: 27

Answer

$0$

Work Step by Step

The parameterize representation for the curve is: $x= \cos \theta; y= \sin \theta$ and $ 0 \leq \theta \lt 2 \pi $ and $dx= -\sin \theta d \theta$ and $dy=\cos \theta d \theta$ We need to work out with the line integral and evaluate the integrand of the double integral as follows: $\int_{C} F \cdot dr= -\int_{S} \dfrac{2xy}{(x^2+y^2)^2} dx+\int_{S} \dfrac{y^2-x^2}{(x^2+y^2)^2} dy$ $=-\int_{S} \dfrac{2(\cos \theta) \times (\sin \theta)}{((\cos \theta)^2+(\sin \theta)^2)^2} \times (-\sin \theta d \theta )+\int_{S} \dfrac{(\sin \theta)^2-(\cos \theta)^2}{((\cos \theta)^2+(\sin \theta)^2)^2} (\cos \theta d \theta )$ $=\int_{0}^{-2 \pi} [\cos 2 \theta \cos \theta +\sin 2 \theta \sin \theta ] d \theta $ $=\int_{0}^{-2 \pi} \cos \theta d\theta $ $=[\sin \theta ]_0^{-2 \pi}$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.