Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.4 Green's Theorem - 16.4 Exercises - Page 1142: 23

Answer

$(\dfrac{4a}{3 \pi}, \dfrac{4a}{3 \pi})$

Work Step by Step

The area of a quarter circle can be given by: $ \dfrac{1}{4} \times \ Area \ of \ circle =\dfrac{1}{4} \pi a^2$ The $x$ -coordinate of the center of mass can be given by: $\overline{x}=\dfrac{1}{2A} \oint_{C} x^2 dy \\= \dfrac{1}{\dfrac{2\pi a^2}{4}} (\dfrac{2 a^3}{3}) \\ =\dfrac{4a}{3 \pi}$ The $y$ -coordinate of the center of mass can be given by: $\overline{y}=\dfrac{1}{2A} \oint_{C} y^2 dx \\= -\dfrac{1}{\dfrac{2\pi a^2}{4}} (-\dfrac{2 a^3}{3}) \\ =\dfrac{4a}{3 \pi}$ So, the center of mass is: $(\dfrac{4a}{3 \pi}, \dfrac{4a}{3 \pi})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.