Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 33

Answer

$$3.390842014 \times 10^{-7}$$

Work Step by Step

Since \begin{array}{ll} {f(x)=\cos x,} & {f(0)=1} \\ {f^{\prime}(x)=-\sin x,} & {f^{\prime}(0)=0} \\ {f^{\prime \prime}(x)=-\cos x,} & {f^{\prime \prime}(0)=-1} \\ {f^{\prime \prime \prime}(x)=\sin x,} & {f^{\prime \prime \prime}(0)=0} \\ {f^{(4)}(x)=\cos x,} & {f^{(4)}(0)=1} \\ {f^{(5)}(x)=-\sin x,} & {f^{(5)}(0)=0} \end{array} Then $$T_{5}(x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$$ Since $$ \left|f(x)-T_{n}(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1) !} $$ Then \begin{aligned} \left|f(0.25)-T_{5}(0.25)\right| &\leq(1) \frac{|0.25-0|^{5+1}}{(5+1) !} \\ \left|f(3.9)-T_{2}(3.9)\right| & \leq \frac{(0.25)^{6}}{6 !} \\ &=\frac{(0.25)^{6}}{720} \\ & \approx \frac{(3.25)^{6}}{720} \end{aligned} To check \begin{aligned} \left|f(0.25)-T_{5}(0.25)\right| & \approx|0.9689124217-0.9689127604| \\ & \approx 3.387 \times 10^{-7}<3.390842014 \times 10^{-7} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.