Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 27

Answer

$$0.00334$$

Work Step by Step

Since \begin{array}{ll} {f(x)=x^{-\frac{2}{3}},} & {f(1)=1} \\ {f^{\prime}(x)=-\frac{2}{3} x^{-\frac{5}{3}},} & {f^{\prime}(1)=-\frac{2}{3}} \\ {f^{\prime \prime}(x)=\frac{10}{9} x^{-\frac{8}{3}},} & {f^{\prime \prime}(1)=\frac{10}{9}} \end{array} Then \begin{aligned} T_{2}(x) &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2} \\ &=1-\frac{2}{3}(x-1)+\frac{5}{9}(x-1)^{2} \end{aligned} and $$\left|f(1.2)-T_{2}(1.2)\right|=|0.885549-0.888889|=0.00334$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.