Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 23

Answer

\begin{aligned} T_{n}(x) =\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)-\frac{1}{2 \sqrt{2}}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{6 \sqrt{2}}\left(x-\frac{\pi}{4}\right)^{3}++\ldots \frac{1}{n ! \sqrt{2}}\left(x-\frac{\pi}{4}\right)^{n} \end{aligned}

Work Step by Step

Since \begin{array}{ll} {f(x)=\cos x,} & {f(\pi/4)=\frac{\sqrt {2}}{2}} \\ {f^{\prime}(x)=-\sin x,} & {f^{\prime}(\pi/4)=\frac{-\sqrt {2}}{2}}\\ {f^{\prime \prime}(x)=-\cos x ,} & {f^{\prime \prime}(\pi/4)=\frac{-\sqrt {2}}{2}}\\ {f^{\prime \prime \prime}(x)=\sin x,} & {f^{\prime \prime \prime}(\pi/4)=\frac{\sqrt {2}}{2}} \end{array} Then \begin{aligned} T_{n}(x) &=\frac{\sqrt{2}}{2}+\frac{-\frac{\sqrt{2}}{2}}{1 !}\left(x-\frac{\pi}{4}\right)+\frac{-\frac{\sqrt{2}}{2}}{2 !}\left(x-\frac{\pi}{4}\right)^{2}+\frac{\frac{\sqrt{2}}{2}}{3 !}\left(x-\frac{\pi}{4}\right)^{3}+\frac{\frac{\sqrt{2}}{2}}{4 !}\left(x-\frac{\pi}{4}\right)^{4}+\ldots\\ &=\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)-\frac{1}{2 \sqrt{2}}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{6 \sqrt{2}}\left(x-\frac{\pi}{4}\right)^{3}++\ldots \frac{1}{n ! \sqrt{2}}\left(x-\frac{\pi}{4}\right)^{n} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.