Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 17

Answer

\begin{aligned} \sin x &= x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !} \end{aligned}

Work Step by Step

Since \begin{array}{rlrl} {f(x)} & {=\sin x} & {f(0)} & {=0} \\ {f^{\prime}(x)} & {=\cos x} & {f^{\prime}(0)} & {=1} \\ {f^{\prime \prime}(x)} & {=-\sin x} & {f^{\prime \prime}(0)} & {=0} \\ {f^{\prime \prime \prime}(x)} & {=-\cos x} & {f^{\prime \prime \prime}(0)} & {=-1} \\ {f^{(4)}(x)} & {=\sin x} & {f^{(4)}(0)} & {=0} \end{array} Then \begin{aligned} \sin x &=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3 !} x^{3}+\ldots \ldots+\frac{f^{(n)}(0)}{n !} x^{n} \\ &=\frac{1}{1 !} x-\frac{1}{3 !} x^{3}+\ldots \ldots+\frac{1}{n !} x^{n} \\ &=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}+\cdots \\ &=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.