Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 32

Answer

$$2.08 \times 10^{-6}$$

Work Step by Step

Since the error bound is given by $$\left|T_{n}(x)-f(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1) !}$$ where $ \left|f^{(n+1)}(u)\right| \leq K$, then for $$f(x)=\sqrt{x}\ \to\ f^{\prime \prime \prime}(x)=\frac{3}{8 x^{\frac{3}{2}}}$$ For $x=3.9 $, choose $K = \frac{3}{8 (3.9)^{\frac{3}{2}}}=0.0125$ and \begin{aligned} \left|f(3.9)-T_{2}(3.9)\right| & \leq(0.0125) \frac{|3.9-4|^{2+1}}{(2+1) !} \\ \left|f(3.9)-T_{2}(3.9)\right| & \leq(0.0125) \frac{0.001}{3 !} \\ &=(0.0125) \frac{0.001}{6}\\ & \approx 2.08 \times 10^{-6} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.