Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 493: 15

Answer

\begin{aligned} e^{x} &= 1+\frac{1}{1 !} x+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+\ldots \ldots+\frac{1}{n !} x^{n} \end{aligned}

Work Step by Step

Since \begin{aligned} f(x) &=e^{x} & & f(0)=1 \\ f^{\prime}(x) &=e^{x} & & f^{\prime}(0)=1 \\ f^{\prime \prime}(x) &=e^{x} & & f^{\prime \prime}(0) =1 \\ f^{\prime \prime}(x) &=e^{x} & & f^{\prime \prime \prime}(0) =1 \\ f^{(4)}(x) &=e^{x} & & f^{(4)}(0) =1 \end{aligned} Then \begin{aligned} e^{x} &=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3 !} x^{3}+\ldots \ldots+\frac{f^{(n)}(0)}{n !} x^{n} \\ &=1+\frac{1}{1 !} x+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+\ldots \ldots+\frac{1}{n !} x^{n} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.