Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 492: 9

Answer

$$T_{2}(x) =2-3 x+\frac{5}{2} x^{2}$$ $$T_{3}(x) =2-3 x+\frac{5}{2} x^{2}-\frac{3}{2} x^{3}$$

Work Step by Step

Given $$f(x)=e^{-x}+e^{-2 x}, \quad a=0$$ Since \begin{aligned} f(x) &=e^{-x}+e^{-2 x} & & f(0) &=2 \\ f^{\prime}(x) &=-e^{-x}-2 e^{-2 x} & & f^{\prime}(0) &=-3 \\ f^{\prime \prime}(x) &=e^{-x}+4 e^{-2 x} & & f^{\prime \prime}(0) &=5 \\ f^{\prime \prime \prime}(x) &=-e^{-x}-8 e^{-2 x} & & f^{\prime \prime \prime}(0) &=-9 \end{aligned} then \begin{aligned} T_{2}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \\ &=2+(-3)(x-0)+\frac{5}{2}(x-0)^{2}\\ &=2-3 x+\frac{5}{2} x^{2} \end{aligned} and \begin{aligned} T_{3}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3} \\ &=2+(-3)(x-0)+\frac{5}{2}(x-0)^{2}+\frac{-9}{6}(x-0)^{3}\\ &=2-3 x+\frac{5}{2} x^{2}-\frac{3}{2} x^{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.