Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 492: 12

Answer

$$T_2=T_3=1+2x^2$$

Work Step by Step

Given $$f(x)=\cosh 2 x, \quad a=0$$ Since \begin{aligned} f(x) &=\cosh 2 x&& f(0) &=1\\ f^{\prime}(x) &=2\sinh 2x & & f^{\prime}(0) &=0\\ f^{\prime \prime}(x) &=4\cosh 2x & & f^{\prime \prime}(0) &=4 \\ f^{\prime \prime \prime}(x) &=8\sinh 2x & & f^{\prime \prime \prime}(0) &=0 \end{aligned} Then \begin{aligned} T_{2}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \\ &=1+2x^2 \end{aligned} and \begin{aligned} T_{3}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3} \\ &=1+\frac{0}{1}(x-0)+\frac{4}{2!}(x-0)^{2}+\left(\frac{0}{6}\right)(x-0^{3} \\ &=1+2x^2 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.