Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 492: 10

Answer

$$T_{2}(x) =4+\frac{8}{1 !}(x-\ln (2))+\frac{16}{2 !}(x-\ln (2))^{2} $$ $$T_{3}(x) =4+8(x-\ln 2)+\frac{16}{2!}(x-\ln 2)^{2}+\frac{32}{3!}(x-\ln 2)^{3}$$

Work Step by Step

Given $$f(x)=e^{2 x}, \quad a=\ln 2$$ Since \begin{array}{rlrl} f(x) & =e^{2 x} & f(\ln 2)&=4 \\ f^{\prime}(x) & =2e^{2 x} & f^{\prime}(\ln 2) & =8 \\ f^{\prime \prime}(x) & =4e^{2 x}& f^{\prime \prime}(\ln 2) & =16 \\ f^{\prime \prime \prime}(x) & =8e^{2 x} & f^{\prime \prime \prime}(\ln 2) & =32 \end{array} Then \begin{align*} T_{2}(x)&=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}\\ &=4+\frac{8}{1 !}(x-\ln (2))+\frac{16}{2 !}(x-\ln (2))^{2} \end{align*} and \begin{aligned} T_{3}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3} \\ &=4+8(x-\ln 2)+\frac{16}{2!}(x-\ln 2)^{2}+\frac{32}{3!}(x-\ln 2)^{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.