Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 492: 8

Answer

\begin{align*} T_{2}&=1+\frac{2}{1 !}\left(x-\frac{\pi}{4}\right)+\frac{4}{2 !}\left(x-\frac{\pi}{4}\right)^{2}\\ T_{3}&=1+\frac{2}{1 !}\left(x-\frac{\pi}{4}\right)+\frac{4}{2 !}\left(x-\frac{\pi}{4}\right)^{2}+\frac{16}{3 !}\left(x-\frac{\pi}{4}\right)^{3} \end{align*}

Work Step by Step

Since \begin{array}{ccc} {\tan \left(\frac{\pi}{4}\right)} & {=} & {1} \\ {\frac{d}{d x}(\tan (x))\left(\frac{\pi}{4}\right)} & {=} & {2} \\ {\frac{d^{2}}{d x^{2}}(\tan (x))\left(\frac{\pi}{4}\right)} & {=} & {4} \\ {\frac{d^{3}}{dx^{3}}(\tan (x))\left(\frac{\pi}{4}\right)} & {=} & {16} \end{array} Then \begin{align*} T_{2}&=1+\frac{2}{1 !}\left(x-\frac{\pi}{4}\right)+\frac{4}{2 !}\left(x-\frac{\pi}{4}\right)^{2}\\ T_{3}&=1+\frac{2}{1 !}\left(x-\frac{\pi}{4}\right)+\frac{4}{2 !}\left(x-\frac{\pi}{4}\right)^{2}+\frac{16}{3 !}\left(x-\frac{\pi}{4}\right)^{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.