Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 492: 6

Answer

\begin{aligned} T_{2} &=-5-(x+2)-2(x+2)^{2}\\ T_{3} &=-5-(x+2)-2(x+2)^{2}-2(x+2)^{3} \end{aligned}

Work Step by Step

Since \begin{array}{ll} {f(x)=\frac{x^2+1}{x+1},} & {f(-2)=-5} \\ {f^{\prime}(x)=\frac{x^2+2x-1}{\left(x+1\right)^2},} & {f^{\prime}(-2)=-1} \\ {f^{\prime \prime}(x)=\frac{4}{\left(x+1\right)^3},} & {f^{\prime \prime}(-2)=-4} \\ {f^{\prime \prime \prime}(x)=-\frac{12}{\left(x+1\right)^4},} & {f^{\prime \prime \prime}(-2)=-12} \end{array} Then \begin{aligned} T_{2}&=-5+\frac{-1}{1 !}(x+2)+\frac{-4}{2 !}(x+2)^{2}\\ &=-5-(x+2)-2(x+2)^{2}\\ T_{3}&=-5+\frac{-1}{1 !}(x+2)+\frac{-4}{2 !}(x+2)^{2}+\frac{-12}{3 !}(x+2)^{3}\\ &=-5-(x+2)-2(x+2)^{2}-2(x+2)^{3} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.