Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.4 Taylor Polynomials - Exercises - Page 492: 7

Answer

$$ T_2(x)=x$$ $$T_3(x)= x+\frac{1}{3} x^{3}$$

Work Step by Step

Given $$f(x)=\tan x, \quad a=0$$ Since \begin{array}{rlrl} f(x) & =\tan x & f(0)&=0 \\ f^{\prime}(x) & =\sec ^{2} x & f^{\prime}(0) & =1 \\ f^{\prime \prime}(x) & =2 \sec ^{2} x \tan x & f^{\prime \prime}(0) & =0 \\ f^{\prime \prime \prime}(x) & =2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x & f^{\prime \prime \prime}(0) & =2 \end{array} Then \begin{align*} T_{2}(x)&=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}\\ &=0+1(x-0)+\frac{0}{2}(x-0)^{2}=x \end{align*} and \begin{align*} T_{3}(x) &=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{6}(x-a)^{3} \\ &=0+1(x-0)+\frac{0}{2}(x-0)^{2}+\frac{2}{6}(x-0)^{3}\\ &=x+\frac{1}{3} x^{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.