Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.3 Center of Mass - Exercises - Page 483: 24

Answer

$(\frac{40-27\ln3}{24-18\ln3}, \frac{18\ln3-9(\ln3)^{2}-4}{24-18\ln3})$

Work Step by Step

$M_{x}$ = $\frac{1}{2}\int_1^3{[(x-1)^{2}-(\ln{x})^{2}]}dx$ = $(\frac{1}{3}x^{3}-x^{2}-x-x(\ln{x})^{2}+2x\ln{x})|_1^3)$ = $3\ln3-\frac{3}{2}(\ln3)^{2}-\frac{2}{3}$ $M_{y}$ = $\int_1^3{[x(x-1)-(\ln{x})]}dx$ = $(\frac{1}{3}x^{3}-\frac{1}{2}x^{2}\ln{x}-\frac{1}{4}x^{2})|_1^3$ = $\frac{20}{3}-\frac{9}{2}\ln3$ $A$ = $\int_1^3{[(x-1)-(\ln{x})]}dx$ = $(\frac{1}{2}x^{2}-x\ln{x})|_1^3$ = $4-3\ln3$ so the coordinates of the centroid are $(\frac{40-27\ln3}{24-18\ln3}, \frac{18\ln3-9(\ln3)^{2}-4}{24-18\ln3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.