Answer
$(\frac{2}{6\ln{2}-3}, \frac{1}{12\ln{2}-6})$
Work Step by Step
$M_{x}$ = $\frac{1}{2}\int_1^2{[(\frac{1}{x})^{2}-(2-x)^{2}]}dx$ = $\frac{1}{12}$
$M_{y}$ = $\int_1^2{x[(\frac{1}{x})-(2-x)]}dx$ = $\frac{1}{3}$
$A$ = $\int_1^2{[(\frac{1}{x})-(2-x)]}dx$ = $\ln{2}-\frac{1}{2}$
so the coordinates of the centroid are $(\frac{2}{6\ln{2}-3}, \frac{1}{12\ln{2}-6})$