Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.3 Center of Mass - Exercises - Page 483: 11

Answer

$$ \left(\bar{x},\bar{y} \right)=\left(\frac{93}{35},\frac{45}{56} \right) $$

Work Step by Step

Since \begin{aligned} M_{y} &=\delta \int_{a}^{b} x f(x) d x \\ &=\int_{1}^{4} x \sqrt{x} d x \\ &=\int_{1}^{4} x^{\frac{3}{2}} d x \\ &=\left.\left(\frac{2}{5} x^{\frac{5}{2}}\right)\right|_{1} ^{4} \\ &=\left(\frac{64}{6}-\frac{2}{5}\right) \\ &=\frac{62}{5} \end{aligned} and \begin{aligned} M_{x} &=\frac{1}{2} \delta \int_{a}^{b} f(x)^{2} d x \\ &=\frac{1}{2} \int_{1}^{4}(\sqrt{x})^{2} d x \\ &=\frac{1}{2} \int_{1}^{4} x d x \\ &=\left.\frac{1}{2}\left(\frac{x^{2}}{2}\right)\right|_{1} ^{4} \\ &=\frac{1}{2}\left(8-\frac{1}{2}\right) \\ &=\frac{15}{4} \end{aligned} and $$ M=\delta A=\int_{1}^{4} \sqrt{x} d x=\int_{1}^{4} x^{\frac{1}{2}} d x=\left.\left(\frac{2}{3} x^{\frac{3}{2}}\right)\right|_{1} ^{4}=\left(\frac{16}{3}-\frac{2}{3}\right)=\frac{14}{3} $$ Then $$ \bar{x}=\frac{M_{y}}{M}=\frac{93}{35} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{M}=\frac{45}{56} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.