Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.3 Center of Mass - Exercises - Page 483: 17

Answer

$$\left(\frac{\pi}{2} ,\frac{\pi}{8}\right)$$

Work Step by Step

Given $$ f(x)=\sin x, \quad[0, \pi]$$ Since \begin{align*} M_{y}&=\rho \int_{a}^{b} x f(x) d x\\ &=\int_{0}^{\pi} x \sin x d x \end{align*} Let \begin{aligned} &u=x &d v=\sin x\\ &d u=1 & v=-\cos x \end{aligned} Then \begin{aligned} M_{y}=\int_{0}^{\pi} x \sin x d x&=-x \cos x\bigg|_{0}^{\pi} +\int_{0}^{\pi} \cos x \, d x \\ &=-x \cos x+\sin x\bigg|_{0}^{\pi} \\ &= \pi \end{aligned} Since \begin{aligned} M_{x}=\frac{1}{2} \delta \int_{a}^{b} f(x)^{2} d x &=\frac{1}{2} \int_{0}^{\pi} \sin ^{2} x d x \\ &=\frac{1}{2} \int_{0}^{\pi} \frac{1-\cos 2 x}{2} \\ &=\frac{1}{4} \int_{0}^{\pi} 1 d x-\frac{1}{4} \int_{0}^{\pi} \cos 2 x d x \\ &=\left.\frac{1}{4}(x)\right|_{0} ^{\pi}-\frac{1}{4}\frac{\sin 2x}{2} \bigg|_{0}^{\pi} \\ &=\frac{\pi}{4} \end{aligned} and \begin{align*} M=\rho A&=\int_{0}^{\pi} \sin x d x\\ &=\left.(-\cos x)\right|_{0} ^{\pi}\\ &=2 \end{align*} Then \begin{align*} \left(\bar{x}, \bar{y}\right) &=\left(\frac{M_{x}}{M}, \frac{M_{y}}{M}\right)=\left(\frac{\pi}{2} ,\frac{\pi}{8}\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.