Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.3 Center of Mass - Exercises - Page 483: 14

Answer

$$\left(\bar{x}, \bar{y}\right) =\left(\frac{\sqrt{10}-1}{\ln (3+\sqrt{10})} ,\frac{\tan ^{-1}(3)}{2 \ln (3+\sqrt{10})}\right)$$

Work Step by Step

Given $$f(x)=\left(1+x^{2}\right)^{-1 / 2}, \quad[0,3]$$ Since \begin{aligned} M_{y} &=\rho \int_{a}^{b} x f(x) d x \\ &=\int_{0}^{3} x \frac{1}{\sqrt{1+x^{2}}} d x\\ &=\sqrt{1+x^2}\bigg|_{0}^{3}\\ &=\sqrt{10}-1 \end{aligned} and \begin{aligned} M_{x} &=\frac{1}{2} \rho \int_{a}^{b} f(x)^{2} d x \\ &=\frac{1}{2} \int_{0}^{3}\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2} d x \\ &=\frac{1}{2} \int_{0}^{3} \frac{1}{1+x^{2}} d x \\ &=\left.\frac{1}{2}\left(\tan ^{-1}(x)\right)\right|_{0} ^{3} \\ &=\frac{1}{2} \tan ^{-1}(3) \end{aligned} and \begin{align*} M&=\rho A\\ &=\int_{0}^{3} \frac{1}{\sqrt{1+x^{2}}} d x\\ &=\sinh^{-1}(x)\bigg|_{0}^{3}\\ &= \sinh^{-1}(3)\\ &=\ln (\sqrt{10} +3) \end{align*} then \begin{align*} \left(\bar{x}, \bar{y}\right)&=\left(\frac{M_{y}}{M},\frac{M_{x}}{M} \right)\\ &=\left(\frac{\sqrt{10}-1}{\ln (3+\sqrt{10})} ,\frac{\tan ^{-1}(3)}{2 \ln (3+\sqrt{10})}\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.