Answer
$(\frac{1}{2(e-2)}, \frac{e^{2}-3}{4(e-2)})$
Work Step by Step
$M_{x}$ = $\frac{1}{2}\int_0^1{[e^{2x}-1}]dx$ = $\frac{e^{2}-3}{4}$
$M_{y}$ = $\int_0^1{x[e^{x}-1}]dx$ = $\frac{1}{2}$
$A$ = $\int_0^1{[e^{x}-1}]dx$ = $e-2$
so the coordinates of the centroid are $(\frac{1}{2(e-2)}, \frac{e^{2}-3}{4(e-2)})$