Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.9 Numerical Integration - Exercises - Page 457: 7

Answer

$$T_{6}=1.17 ,\ \ \ \ M_{6}= 1.206$$

Work Step by Step

Given $$\int_{0}^{\pi/2}\sqrt{\sin x}d x,\ \ \ N=6 $$ Since $\Delta x=\dfrac{b-a}{N}=\dfrac{\pi/2}{6}=\frac{\pi}{12} $ Therefore, the sub intervals consist of $$[0,\pi/12],[\pi/12,2\pi/12],[2\pi/12,3\pi/12],[3\pi/12,4\pi/12],[4\pi/12,5\pi/12],[5\pi/12,\pi/2]$$ The midpoints of these sub intervals are $$\{\frac{\pi}{24}, \frac{3 \pi}{24}, \ldots, \frac{11 \pi}{24}\}$$ Hence \begin{align*} M_{n}&= \sum_{i=1}^{n}f(m_i)\Delta x\\ M_{6}&= \left[ f(m_1)+ f(m_2)+ ..............+f(m_5)\right]\Delta x\\ &=\frac{\pi}{12}\left[ f( \pi/24)+ f(3\pi/24)+\cdots + f(11\pi/24)\right]\\ &\approx 1.206 \end{align*} Now find $T_6$ \begin{align*} T_{n}&=\dfrac{1}{2}\left[f(x_0)+2f(x_1)+2f(x_2)+.....+2f(x_{n-1})+f(x_n)\right]\Delta x\\ T_{6}&=\dfrac{1}{2}\left[f(x_0)+2f(x_1)+2f(x_2)+2f(x_{3})+2f(x_4)+2f(x_5)+f(x_6)\right]\Delta x\\ &=\frac{\pi}{24}\left[f(0)+2f(\pi/12)+2f(\pi/6)+\cdots +2f(5\pi/12)+f(\pi/2)\right] \\ &\approx 1.17 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.