Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.9 Numerical Integration - Exercises - Page 457: 22

Answer

$$1.59$$

Work Step by Step

Given $$\int_{0}^{2}\left(x^{2}+1\right)^{-1 / 3} d x, \quad N=10$$ Since $\Delta x=\dfrac{b-a}{N}=\dfrac{ 2}{10}=0.2$, then by using Simpson’s rule \begin{align*} S_{n}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3).....+4f(x_{n-1})+f(x_n)\right]\\ S_{10}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+4f(x_5) +2f(x_6)+4f(x_7) +2f(x_8)+4f(x_9) +f(x_{10}) \right] \\ &=\dfrac{1}{15}\left[f(0)+4f(0.2)+2f(0.4)+4f(0.6)+2f(0.8) +4f(1)+2f(1.2)+4f(1.4)+2f(1.6) +4f(1.8)+f(2) \right]\\ &\approx 1.59 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.