Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.9 Numerical Integration - Exercises - Page 457: 3

Answer

$$M_6=63.28,\ \ T_6=64.68$$

Work Step by Step

Given $$\int_{1}^{4} x^{3} d x $$ Since $\Delta x=\dfrac{b-a}{n}=\dfrac{3}{6}=\frac{1}{2}$ Therefore, the sub intervals consist of $$[1,1.5],[1.5,2],[2,2.5],[2.5,3],[3,3.5], [3.5,4] $$ The midpoints of these sub intervals are $$\{1.25,1.75,2.25,2.75, 3.25,3.75\}$$ Hence \begin{align*} M_{n}&= \sum_{i=1}^{n}f(m_i)\Delta x\\ M_{6}&= \left[ f(m_1)+ f(m_2)+ ..............+f(m_6)\right]\Delta x\\ &=\frac{1}{2}\left[ f(1.25)+ f(1.75)+ f(2.25)+ f(2.75)+ f(3.25)+f(3.75)\right]\\ &\approx 63.28 \end{align*} To find $T_4$ \begin{align*} T_{n}&=\dfrac{1}{2}\left[f(x_0)+2f(x_1)+2f(x_2)+.....+2f(x_{n-1})+f(x_n)\right]\Delta x\\ T_{6}&=\dfrac{1}{2}\left[f(x_0)+2f(x_1)+2f(x_2)+2f(x_{3})+2f(x_4)+2f(x_5)+f(x_6)\right]\Delta x\\ &=\dfrac{1}{4}\left[f(1)+2f(1.5)+2f(2)+2f(2.5)+2f(3)+2f(3.5)+f(4)\right] \\ &\approx 64.68 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.