Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.9 Numerical Integration - Exercises - Page 457: 15

Answer

$$1.109.$$

Work Step by Step

Given$$\int_{0}^{3} \frac{d x}{x^{4}+1}, \quad N=6 $$ Since $\Delta x=\dfrac{b-a}{N}=0.5$ , then by using Simpson’s rule \begin{align*} S_{n}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3).....+4f(x_{n-1})+f(x_n)\right]\\ S_{4}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+4f(x_5) +f(x_{6}) \right] \\ &=\dfrac{1}{6}\left[f(0)+4f(0.5)+2f(1.5)+4f(2)+2f(2.5) +f(3) \right]\\ &\approx 1.109. \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.