Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.9 Numerical Integration - Exercises - Page 457: 25

Answer

$$1.87691$$

Work Step by Step

Given $$y=e^{ -x^2} ; \quad\left[0,1\right] ; \quad x \text { -axis; } \quad T_{8}$$ Since $$ V= \pi \int_{0}^{1} [f(x)]^2dx= \pi \int_{0}^{1}e^{ -2x^2}dx$$ Now, we will evaluate the integral using $T_8$, since $\Delta x=\dfrac{b-a}{n}=\dfrac{1}{8}$ \begin{align*} T_{n}&=\dfrac{1}{2}\left[f(x_0)+2f(x_1)+2f(x_2)+.....+2f(x_{n-1})+f(x_n)\right]\Delta x\\ T_{8}&=\dfrac{1}{2}\left[f(x_0)+2f(x_1)+2f(x_2)+\cdots +2f(x_{7})+f(x_8)\right]\Delta x\\ &=\dfrac{1}{16}\left[f(0)+2f(1/8)+2f(2/8)+2f(3/8)+2f(4/8)+2f(5/8)+2f(6/8)+2f(7/8)+f(1)\right] \\ &\approx 0.59746 \end{align*} Hence, $V\approx \pi *0.59746 \approx 1.87691$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.