Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.9 Numerical Integration - Exercises - Page 457: 20

Answer

$$ 18.79$$

Work Step by Step

Given $$ \int_{2}^{4} \sqrt{x^{4}+1} d x, \quad N=8 $$ Since $\Delta x=\dfrac{b-a}{N}=\dfrac{1}{4}$ , then by using Simpson’s rule \begin{align*} S_{n}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3).....+4f(x_{n-1})+f(x_n)\right]\\ S_{8}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+4f(x_5)+2f(x_6)+4f(x_7) +f(x_{8}) \right] \\ &=\dfrac{1}{12}\left[f(2)+4f(2.25)+2f(2.5)+4f(2.75)+2f(3) +4f(3.25)+2f(3.5) +4f(3.75)+f(4) \right]\\ &\approx 18.79 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.