Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.8 Inverse Trigonometric Functions - Exercises - Page 375: 113

Answer

$$\int \sin ^{-1} t d t=\sqrt{1-t^{2}}+t \sin ^{-1} t+C$$

Work Step by Step

Given $$ \int \sin ^{-1} t d t $$ Let \begin{align*} u&=\sin^{-1}t \ \ \ \ \ \ \ \ dv=dt\\ du&=\frac{dt}{\sqrt{1-t^2}}\ \ \ \ \ \ \ \ v= t \end{align*} Then \begin{align*} \int \sin ^{-1} t d t &= t\sin^{-1}t -\int \frac{tdt}{\sqrt{1-t^2}}\\ &=t \sin ^{-1} t+\sqrt{1-t^{2}} +C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.