Answer
$ t= \frac{1}{3}\ln9$
Work Step by Step
We have
$$ e^{2t+1}=9e^{1-t}\Longrightarrow \ln e^{2t+1}= \ln(9e^{1-t}) \\
\Longrightarrow {2t+1}= \ln9+\ln e^{1-t}\\
\Longrightarrow {2t+1}= \ln9+1-t\\
\Longrightarrow 3t= \ln9\Longrightarrow t= \frac{1}{3}\ln9.
$$