Answer
$$L(x) = -5x +12$$
Work Step by Step
Given $$f(x) =x e^{6-3 x} ,\ \ a=2$$
Since $f(a) =2$ and
\begin{align*}
f'(x)&= \frac{d}{dx}\left(x\right)e^{6-3x}+\frac{d}{dx}\left(e^{6-3x}\right)x\\
&= (1-3x ) e^{6-3 x}\\
f'(2)&= -5
\end{align*}
Then the linearization is given by
\begin{align*}
L(x)&=f^{\prime}(a)(x-a)+f(a)\\
&= -5 (x-2)+2\\
&= -5x +12
\end{align*}