Answer
$$ f'(x)= -4e^{-x}-14e^{-2x}.$$
Work Step by Step
Recall that $(e^x)'=e^x$
Since we have
$$ f(x)=4e^{-x}+7e^{-2x}$$
then the derivative $ f'(x)$, using the chain rule, is given by
$$ f'(x)=4e^{-x}(-x)'+7e^{-2x}(-2x)'=-4e^{-x}-14e^{-2x}.$$