Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.2 The Definite Integral - Exercises - Page 246: 73

Answer

$$\frac{1}{2}$$

Work Step by Step

Given $$\int_{-1}^{1}|x^3| d x $$ Since $$x^3 > 0\ \ \text{ for }\ \ x>0 \\ x^3< 0\ \ \text{ for } \ \ x<0$$ Then \begin{align*} \int_{-1}^{1}\left|x^{3}\right| d x&=\int_{-1}^{0}-x^{3} d x+\int_{0}^{1} x^{3} d x\\ &= \int_{0}^{-1}x^{3} d x+\int_{0}^{1} x^{3} d x\\ &=\frac{1}{4}x^{4} \bigg|_{0}^{-1}+ \frac{1}{4}x^{4}\bigg|_{0}^{1}\\ &=\frac{1}{4}+\frac{1}{4}\\ &=\frac{1}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.