Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.2 The Definite Integral - Exercises - Page 246: 54

Answer

$-16$

Work Step by Step

We have $$ \int_{-2}^{2}\left(2 x^{3}-3x^2\right) d x\\ =\int_{-2}^{0}\left(2 x^{3}-3x^2\right) d x +\int_{0}^{2}\left(2 x^{3}-3x^2\right) d x\\ =-\int_{0}^{-2}\left(2 x^{3}-3x^2\right) d x +\int_{0}^{2}\left(2 x^{3}-3x^2\right) d x\\ =-(2\frac{(-2)^4}{4}-3\frac{(-2)^3}{3})+(2\frac{(2)^4}{4}-3\frac{(2)^3}{3})=-16. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.