Answer
$$1$$
Work Step by Step
Since
$$ \int_{1}^{b} f(x) d x=1-b^{-1} \text { for all } b>0$$
then
\begin{aligned}
\int_{1 / 2}^{1} f(x) d x &=-\int_{1 }^{1/2} f(x) d x \\
&=-\left(1-(1 / 2)^{-1}\right) \\
&=-\left(1-\frac{1}{1 / 2}\right) \\
&=-(1-2) \\
&=1
\end{aligned}