Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 22

Answer

$$0.025,\ \ \ 0.02438,\ \ 0.00062$$

Work Step by Step

Given $$\tan ^{-1}(1.05)-\frac{\pi}{4} $$ Consider $f(x)= \tan ^{-1} x $, $a= 1$, $\Delta x= 0.05$, since \begin{align*} f'(x) &= \frac{1}{1+x^2} \\ f'(1)&=0.5 \end{align*} Then the linear approximation is given by \begin{align*} \Delta &f \approx f^{\prime}(a) \Delta x\\ &= (0.5)(0.05)\\ &= 0.025 \end{align*} and the actual change is given by \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &=f(1.05)-f(1)\\ & = 0.02438 \end{align*} Hence the error is $$ |0.02438-0.025| \approx 0.00062 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.