Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 21

Answer

$$0.083333,\ \ \ \ 0.080084,\ \ 3.25 \times 10^{-3} $$

Work Step by Step

Given $$9^{1 / 3}-2$$ Consider $f(x)= x^{1/3}$, $a= 8 $, $\Delta x=1$, since \begin{align*} f'(x) &= \frac{1}{3}x^{-2/3}\\ f'(8)&=0.0833333 \end{align*} Then the linear approximation is given by \begin{align*} \Delta &f \approx f^{\prime}(a) \Delta x\\ &= (0.0833333)(1)\\ &= 0.0833333 \end{align*} and the actual change is given by \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &=f(9)-f(8)\\ & =0.080084 \end{align*} Hence the error is $$ |0.080084-0.083333| \approx 3.25 \times 10^{-3} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.